Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • LibSVM (3.7)
NodeNode / Learner

LibSVM (3.7)

Analytics Integrations Weka Weka (3.7) Classification Algorithms
+1
Drag & drop
Like
Copy short link

A wrapper class for the libsvm tools (the libsvm classes, typically the jar file, need to be in the classpath to use this classifier). LibSVM runs faster than SMO since it uses LibSVM to build the SVM classifier. LibSVM allows users to experiment with One-class SVM, Regressing SVM, and nu-SVM supported by LibSVM tool

LibSVM reports many useful statistics about LibSVM classifier (e.g., confusion matrix,precision, recall, ROC score, etc.).

Yasser EL-Manzalawy (2005). WLSVM. URL http://www.cs.iastate.edu/~yasser/wlsvm/.

Chih-Chung Chang, Chih-Jen Lin (2001).LIBSVM - A Library for Support Vector Machines.

URL http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

(based on WEKA 3.7)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Node details

Input ports
  1. Type: Table
    Training data
    Training data
Output ports
  1. Type: Weka 3.7 Classifier
    Trained model
    Trained model

Extension

The LibSVM (3.7) node is part of this extension:

  1. Go to item

Related workflows & nodes

    1. Go to item
    2. Go to item
    3. Go to item
    4. Go to item
    5. Go to item

    KNIME
    Open for Innovation

    KNIME AG
    Talacker 50
    8001 Zurich, Switzerland
    • Software
    • Getting started
    • Documentation
    • E-Learning course
    • Solutions
    • KNIME Hub
    • KNIME Forum
    • Blog
    • Events
    • Partner
    • Developers
    • KNIME Home
    • KNIME Open Source Story
    • Careers
    • Contact us
    Download KNIME Analytics Platform Read more on KNIME Business Hub
    © 2023 KNIME AG. All rights reserved.
    • Trademarks
    • Imprint
    • Privacy
    • Terms & Conditions
    • Credits