Hub
Pricing About
NodeNode / Visualizer

Partial Dependence/ICE Plot

KNIME LabsML Interpretability
Drag & drop
Like

This node requires the use of the Partial Dependence Pre-processing Component to sample the relevant data. This Component can be found on the EXAMPLES server. You can also navigate to the component via EXAMPLES > 00_Components > Model Interpretability > Partial Dependence Pre-processing.

For an example of how to use this node as well as the required Partial Dependence Pre-processing Component, please see this workflow on the KNIME Hub.

This node is able to visualize how the prediction at the output of a model reacts as a single column is changed in a defined range. Such visualization can help you interpret how any model is using a single column locally, that is visualizing the prediction change instance by instance, and globally, visualizing an overall behavior valid for the majority of the instances but not the outliers.

The Individual Conditional Expectation (ICE) visualizes the prediction change locally to a single instance in a simple line plot. You can visualize many ICE plots by having multiple lines in the same charts. Use the markers in the shape of dots to keep track the original column value and the original prediction each instance has. To visualize colors for different groups/category/clusters add a Color Manager node before this node.

The Partial Dependence Plot (PDP) visualizes the global average prediction change over a number of instances in a line plot. By default you can also visualize how widely the single instances predictions vary from the average by means of a colored area around the line plot.

The generated view is highly interactive and custom to your needs. Change the opacity and sizes of the visual elements to your needs from the node dialogue. From the view itself you can toggle between displaying both ICEs and PDP or just one of them.

ICE is useful to assess the exact prediction change an a single instance or on a small group of instances. When visualizing a global behavior of the model for many instances PDP can be useful, even if it could simplify too much the complexity behind such predictions.

The best way to use this node is in a Composite View by interactively filtering and selecting groups of similar instances.

The node supports custom CSS styling. You can simply put CSS rules into a single string and set it as a flow variable 'customCSS' in the node configuration dialog. You will find the list of available classes and their description on our documentation page .

Node details

Input ports
  1. Type: Table
    Sampled predictions table
    Sampled predictions table created by the "Partial Dependence Pre-processing" Component and the model Predictor node.
  2. Type: Table
    Original data table
    A table with original rows from the data set used to validate the model.
Output ports
  1. Type: Image
    Image port
    An SVG image representation of the view if "Generate Image" option was enabled.
  2. Type: Table
    Output table
    Data table containing the input original rows with a Boolean column appended that represents the selections made in the view.

Extension

The Partial Dependence/ICE Plot node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits