Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • knime
  • Spaces
  • Academic Alliance
  • Guide to Intelligent Data Science
  • Exercises
  • Chapter9_Ensemble_Methods
  • Ensemble_Exercise
WorkflowWorkflow

Ensemble methods

Classification Random forest Gradient boosted trees Bagging Boosting
+5

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
Ensembles: binary classification of house ranking (high/low rank). - Random forest - Gradient Boosted Trees - Training - Evaluation - Parameter Optimization

External resources

  • Guide to Intelligent Data Science
  • Ames Housing Dataset on kaggle
  • Description of the Ames Iowa Housing Data

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.0
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits