Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
Sign in
  • KNIME Hub
  • knime
  • Spaces
  • Academic Alliance
  • Guide to Intelligent Data Science
  • Exercises
  • Chapter9_Ensemble_Methods
  • Ensemble_Exercise
WorkflowWorkflow

Ensemble methods

classification random forest gradient boosted trees bagging boosting +5

Last edited: 

Drag Workflow
Workflow preview
Ensembles: binary classification of house ranking (high/low rank). - Random forest - Gradient Boosted Trees - Training - Evaluation - Parameter Optimization

External resources

  • Guide to Intelligent Data Science
  • Ames Housing Dataset on kaggle
  • Description of the Ames Iowa Housing Data

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.0
  • KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

  • KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

Legal

By downloading the workflow, you agree to our terms and conditions.

License (CC-BY-4.0)
Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2021 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits