Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • knime
  • Spaces
  • Examples
  • 00_Components
  • Data Manipulation
  • Python Transform
ComponentComponent

Python Transform

KNIME profile image

Last edited: 

Drag & drop
Like
Use or download
Copy short link
This Component transforms values of the user selected columns to normalized values by standardizing them across their mean values. The Component uses the Python Extension to perform the normalization with the Python Class “Standard Scaler preprocessing” in the Scikit learn library (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html). This Component outputs the normalized values along with the Python Pickled Object that contains the parameters used for normalisation. DATA INPUT REQUIREMENTS - The input data should have numerical columns which can be transformed.

Component details

Input ports
  1. Type: Table
    Port 0
    Input Data.
Output ports
  1. Type: Table
    Port 0
    Transformed columns as per the user selection in the configuration panel.
  2. Type: Python
    Port 1
    Python Pickle Object which can be used to normalise the data, based on the normalisation parameters used in this Component.

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.2 Note: Not all extensions may be displayed.
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    KNIME profile image
    knime
  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    KNIME profile image
    knime
  • Go to item
    KNIME Python Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    KNIME profile image
    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    KNIME profile image
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the component, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits