Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • knime
  • Spaces
  • Parameter Optimization Space
  • 01_Classification
  • 02_Parameter_Optimization_with_Components
  • 00_Parameter_Optimization_Component_Hardcoded_on_Random_Forest_(Legacy)
WorkflowWorkflow

Parameter Optimization Component Hardcoded on Random Forest (Legacy)

Machine learning Data science Random forest Parameter optimization Verified components
KNIME profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow shows how to use the legacy version of the parameter optimization component. This component only works out of the box with a random forest classification which optimizes the number of trees and the max tree depth. Changing which parameters and which model is optimized requires unlinking and editing the component. You can still use this legacy component as a template, in case you want to create your own component. We recommend, however to adopt the Parameter Optimization (Table) component (kni.me/c/A_91QC387NtvJ6g8).

External resources

  • Parameter Optimization Video - KNIME TV - YouTube
  • ML Algorithms and the Art of Parameter Selection - KNIME Blog
  • KNIME Verified Components - knime.com

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.2
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.2

    KNIME profile image
    knime
  • Go to item
    KNIME Ensemble Learning Wrappers Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    KNIME profile image
    knime
  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    KNIME profile image
    knime
  • Go to item
    KNIME Optimization extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    KNIME profile image
    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.2

    KNIME profile image
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits