Hub
Pricing About
WorkflowWorkflow

SHAP and Shapley Values Loop Nodes with a Custom Regression Model

Machine learning interpretabilityMliForce plotShapleyShap
+2
knime profile image
Versionv 1.0.0Latest, created on 
Jan 29, 2025 12:41 PM
Drag & drop
Like
Download workflow
Workflow preview
This worflow shows how to use SHAP and Shapley Values Loop nodes and it creates Stacked Bar Charts similar to Force Plots for you to compare and understand the explanations. SHAP algorithm needs a smaller table to represent the validation set. This is achieved with the SHAP Summarizer Component. This workflow showcases an example of using Gradient Boosted Trees Regression model, the workflow can be used with any other model as well.

External resources

  • SHAP (SHapley Additive exPlanations) - Python Library on GitHub
  • Explaining prediction models and individual predictions with feature contributions, Štrumbelj and Kononenko, 2014
  • Verified Components
  • SHAP Dependence Plot (documentation)
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.6.3
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.6.1, 4.6.2

    knime profile image
    knime
  • Go to item
    KNIME Ensemble Learning WrappersTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime profile image
    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.2

    knime profile image
    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime profile image
    knime
  • Go to item
    KNIME Machine Learning Interpretability ExtensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime profile image
    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime profile image
    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits