Hub
Pricing About
ComponentComponent

RProp MLP - Data Preparation Binary - Compute

MLPNeural NetworkRProp
mlauber71 profile image
Draft Latest edits on 
Sep 13, 2024 9:56 AM
Drag & drop
Like
Use or download

The input can be data with strings, integers and doubles. It should have a string variable called "Target" as a binary label/target (0/1)

This component prepares data to be used for the "RProp MLP Learner" node creating a neural network. It will:

  • 01 Remove missing values

  • 02 Convert categories to numbers

  • convert integers to double (MLP seems to like that)

  • 03 Normalize the double columns

Also the new column specs will be provided

The conversions will be stored in PMML Files to be later used to prepare new data.

Component details

Input ports
  1. Type: Table
    the original data
    the original data with String "Target" 0/1
Output ports
  1. Type: Table
    Normalized WITH Target
    Normalized original data WITH Target
  2. Type: PMML
    01 Missing Values (PMML)
    PMML setting the missing values
  3. Type: PMML
    02 Category to Number (PMML)
    PMML converting the strings to numbers (double later)
  4. Type: PMML
    03 Normalization (PMML)
    PMML for the Normalization
  5. Type: Table
    Column Name
    Table Specs of the modified training data

External resources

  • Hub: Heart Disease - Machine Learning Case - MLP - Parameter Optimization Loop
  • Component: RProp MLP - Data Preparation Binary - Apply
  • Node: RProp MLP Learner

Used extensions & nodes

Created with KNIME Analytics Platform version 5.3.2
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime

This component does not have nodes, extensions, nested components and related workflows

Legal

By using or downloading the component, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits