Hub
Pricing About
WorkflowWorkflow

SVM_Workflow_γ and σ fine-tuning

SvmSupport vector machines
nilotpalc profile image
Draft Latest edits on 
Jul 24, 2023 1:58 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow shows how to utlize the parameter optimization methodology for varying the c-param and sigma-value for radio base function (rbf) in SVM ML application. KNIME node generally offers the sigma parameter for optimization while the c-param is available as a flow variable and is not directly visible. The approach has been adopted basis the approach mentioned for running SVM in Python as part of the Udemy course.

External resources

  • 01-Support Vector Machines with Python.ipynb
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.1.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime
  • Go to item
    KNIME ExpressionsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime
  • Go to item
    KNIME Python IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits