Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • roberto_cadili
  • Spaces
  • A Friendly Introduction to Codeless Deep Learning
  • RNN-LSTM Sentiment Analysis
  • Deploying Sentiment Predictor - Deep Learning
WorkflowWorkflow

Deploying a Sentiment Analysis Predictive Model - Deep Learning using an Recurrent Neural Network (RNN)

Sentiment analysis Sentiment Deployment Marketing Analytics Deep learning
+1
Roberto Cadili profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow applies an RNN, trained on the Kaggle Dataset (https://www.kaggle.com/crowdflower/twitter-airline-sentiment), on new tweets around #xxx to predict their sentiment. The last component visualizes (1) the bar chart with the number of negative/positive/neutral tweets, (2) the word cloud of all collected tweets, and (3) the table with all collected tweets. This workflow is tailored for Windows. If you run it on another system, you may have to adapt the environment of the Conda Environment Propagation node. If you use this workflow, please cite: 
F. Villaroel Ordenes & R. Silipo, “Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications”, Journal of Business Research 137(1):393-410, DOI: 10.1016/j.jbusres.2021.08.036.

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.1
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME Deep Learning - Keras Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Expressions Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Python Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Twitter Connectors Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits