Hub
Pricing About
WorkflowWorkflow

Energy Demand Prediction

Time SeriesPredictionEnergy UsageLSTMDeep Learning
+2
knime profile image
Versionv1.0Latest, created on 
Aug 12, 2025 12:34 PM
Drag & drop
Like
Download workflow
Workflow preview

Energy Demand Prediction

This workflow forecasts hourly energy demand by aligning hourly timestamps, generating lag features and training an LSTM deep neural network. It includes:

  • Data ingestion of historical energy consumption data

  • Timestamp alignment, missing value handling, and generation of lagged features as predictors

  • Training and application of a Keras-based LSTM deep neural network to forecast energy demand per hour

    • Make sure to select the proper Conda environment for Keras under "Preferences > Python Deep Learning". For more info and installation guidance, check the pertinent docs.

  • Comparison of actual vs. predicted values via line plots and scoring metrics.

External resources

  • KNIME Deep Learning Integration Installation Guide
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.5.1
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.1

    knime profile image
    knime
  • Go to item
    KNIME Deep Learning - Keras IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.0

    knime profile image
    knime
  • Go to item
    KNIME Deep Learning - TensorFlow IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.0

    knime profile image
    knime
  • Go to item
    KNIME ExpressionsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.1

    knime profile image
    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.0

    knime profile image
    knime
  • Go to item
    KNIME PlotlyTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.0

    knime profile image
    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.5.1

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits