Hub
Pricing About
WorkflowWorkflow

Streaming Sentiment Analysis of Documents using Document Vector Hashing

NLPNatural Language ProcessingClassification
knime profile image
Draft Latest edits on 
Aug 31, 2016 5:25 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflows shows an alternative way to execute the Sentiment Analysis example with streaming enabled using the Document Vector Hashing node. The node creates document vectors with a fixed number of dimensions using various hashing methods. It reads textual data from a csv file and converts the strings into documents, which are then preprocessed, i.e. filtered and stemmed and transformed into numerical/binary document vectors in a streaming fashion. All the preprocessing steps take place in the Streaming text preprocessing meta node. After the document vectors have been created the sentiment class is extracted and a predictive model is built and scored.
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME TextprocessingTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits