Hub
Pricing About
WorkflowWorkflow

Fine-tune VGG16

Deep learningKerasImage classificationCatDog
bwilhelm profile image
Draft Latest edits on 
Oct 28, 2017 5:49 PM
Drag & drop
Like
Download workflow
Workflow preview
In this workflow we are fine-tuning a ResNet50 (https://keras.io/api/applications/resnet/#resnet50-function). First, we download the network from Keras using the DL Python Network Creator node. To implement the fine-tuning approach, we freeze the parameters of all network layers except for batch normalization layers. This is done to allow the normalization to adapt to the new data. Finally, we add a new trainable network head to output cat and dog probabilities (the original network head is already removed when loading the model from Keras).
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.2
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.2

    knime
  • Go to item
    KNIME Deep Learning - Keras IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Image ProcessingTrusted extension

    University of Konstanz / KNIME

    Version 1.8.3

    bioml-konstanz
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits