Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • edwardscott
  • Spaces
  • Lab4
  • Lab4-Assigned
  • Excercises
  • 07 Random Forest
WorkflowWorkflow

07 Random Forest

Ensemble model Random Forest
E

Last edit:

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
Exercise for training a Random Forest model. Build a Random Forest (Regression) model on a training set. Apply it to a test set, and evaluate the model's performance with numeric scoring metrics.

External resources

  • Random Forest
  • Random Forest Learner & Predictor

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.0
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Ensemble Learning Wrappers Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Expressions Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME JavaScript Views (Labs) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Math Expression (JEP) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Statistics Nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits