Hub
Pricing About
WorkflowWorkflow

Hyper Parameter Optimization - Exercise

Time SeriesPredictionEnergy UsageParameter OptimizationHyper Parameter
+2
knime profile image
Draft Latest edits on 
Jun 3, 2024 2:01 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow optimizes the parameters of a machine learning model that predicts the residual of time series (energy consumption). The residual of time series is what is left after removing the trend and first and second seasonality. The optimized parameters are the number of trees and tree depth in a Random Forest model.

External resources

  • Slides on the KNIME Website
  • Parameter Optimization for Prediction Loops
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.4.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME Ensemble Learning WrappersTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME ExpressionsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME Python Integration

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits