Hub
Pricing About
WorkflowWorkflow

Anomaly Detection. Time Series AR Training

Anomaly detectionTime series analysisAuto-regressive modelsIoTInternet of Things
+3
knime profile image
Draft Latest edits on 
Feb 3, 2022 12:11 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow trains an auto-regressive model for anomaly detection: - Filter the data to training data covering only normal functioning - Loop over each frequency column at a time - Train an auto-regressive model using 10 past values as predictors - Calculate in-sample prediction error statistics - Save the model and prediction error statistics for deployment
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime profile image
    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime profile image
    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime profile image
    knime
  • Go to item
    KNIME Statistics NodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits