This application is a simple example of Xgboost model with KNIME Software for binary and multiclass classification. The model output is then explained via the interactive XAI View. Machine Learning Interpretability (MLI) techniques used: SHAP explanations/reason codes, partial dependence, individual conditional expectation (ICE) curves and a surrogate decision tree.
The workflow also works locally on KNIME Analytics Platform. Make sure to use "Apply and Close" in bottom-right corner of each view.
Workflow
XAI View Component with a Custom Model
External resources
Used extensions & nodes
Created with KNIME Analytics Platform version 4.6.1
- Go to item
- Go to item
- Go to item
- Go to item
- Go to item
- Go to item
Loading deployments
Loading ad hoc executions
Legal
By using or downloading the workflow, you agree to our terms and conditions.
Discussion
Discussions are currently not available, please try again later.