Hub
Pricing About
WorkflowWorkflow

Compute and Visualize Global Feature Importance Metrics

AutoMLAutomated machine learningGuided analyticsIntegrated deploymentInterpretability
+7
lada profile image
Draft Latest edits on 
Aug 13, 2024 3:56 PM
Drag & drop
Like
Download workflow
Workflow preview
This application is a simple example of inspecting global feature importance for binary and multiclass classification with KNIME Software. The key of this example is the Global Feature Importance component verified and developed by the KNIME Team. In this example, the Wine quality data set is partitioned to training and test samples. Then, the black box model (Neural Network) is trained on the standardly pre-processed training data using the AutoML component. The Workflow Object capturing the pre-processing and the model is provided as an input for the Global Feature Importance component together with the test data. The component provides the global feature importance according to four techniques: three interpretable Global Surrogate Models (GLM, Decision Tree, and Random Forest) and Permutation Feature Importance.

External resources

  • Wine quality data set (Kaggle)
  • Seven Techniques for Data Dimensionality Reduction (2015)
  • Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019.
  • KNIME Integrated Deployment - KNIME.com
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.2
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime
  • Go to item
    KNIME Data GenerationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Deep Learning - Keras IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME Ensemble Learning WrappersTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME H2O Machine Learning IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Integrated DeploymentTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Machine Learning Interpretability ExtensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Optimization extensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME PMML Preprocessing Applier NodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime
  • Go to item
    KNIME XGBoost IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits