Hub
Pricing About
ComponentComponent

RF Feature Importance (based on Python Library)

mahan_personal profile image
Draft Latest edits on 
Feb 3, 2021 10:48 AM
Drag & drop
Like
Use or download
This Component can be used to visualise the Feature/variable importance in a binary classification sceanrio. It used the Random forest importance calculater function in python to calculate the importance of the variables. The python script nodes are encapsulated in this component, the user do not have to set up the python environment, the conda propagation node will set up all the required libararies to the user system Can be used on KAP version 4.3 and above

Component details

Input ports
  1. Type: Table
    Input
    Input data with binary target
Output ports
  1. Type: Table
    Output
    Feature Importance table

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.1
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Python Integration

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime

This component does not have nodes, extensions, nested components and related workflows

Legal

By using or downloading the component, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits