Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • mlauber71
  • Spaces
  • Public
  • kn_example_bigdata_h2o_automl_spark
  • s_401_spark_label_encoder
WorkflowWorkflow

Spark Label Encoding - prepare the data in local Big Data environment

Knime Spark Hive Impala Label
+3

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
s_401 - prepare label encoding with spark prepare the preparation of data in a big data environment - label encode string variables - transform numbers into Double format (Spark ML likes that) - remove highly correlated data - remove NaN variables - remove continous variables - optional: normalize the data

External resources

  • the data used is a cleaned and updated version of Census Income dataset

Used extensions & nodes

Created with KNIME Analytics Platform version 4.2.0 Note: Not all extensions may be displayed.
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.1.2, 4.2.0

  • Go to item
    KNIME Database Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.1

  • Go to item
    KNIME Extension for Apache Spark Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.1.1, 4.2.0

  • Go to item
    KNIME Extension for Big Data File Formats Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME Extension for Local Big Data Environments Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.0

  • Go to item
    KNIME Math Expression (JEP) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    Vernalis KNIME Nodes Trusted extension

    Vernalis Research Ltd, Cambridge, UK

    Version 1.26.0

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits