Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • mlauber71
  • Spaces
  • Public
  • kn_example_deeplearning_keras_tensorflow_classification
  • kn_deeplearn_050_tensorflow2_basic_mlp
WorkflowWorkflow

Train a simple Multilayer Perceptron using TensorFlow 2

TensorFlow 2 Deep Learning Tf TensorFlow MLP
+1

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
Train a simple Multilayer Perceptron using TensorFlow 2 for a binary classification This workflow shows how to train a simple multilayer perceptron for classification. It is demonstrated how the "DL Python Network Creator" can be used to create a simple neural network using the tf.keras API and how the "DL Python Network Learner" can be used to train the created network on data. Please note this example should demonstrate how to set up the deep learning environment with Tensor Flow 2 and provide a working simple example. adapted from: https://kni.me/w/Z1BLynW6P1l14odY please download the complete DeepLearning (Keras, Tensorflow, H2O.ai) Workflow group: https://hub.knime.com/mlauber71/spaces/Public/latest/kn_example_deeplearning_keras_tensorflow_classification~G8jl-DTMCBqoxyB9/ ------------------ In order to run the example, please make sure you have the following KNIME extensions installed: * KNIME Deep Learning - TensorFlow 2 Integration (Labs) You also need a local Python installation that includes TensorFlow 2. Please refer to https://docs.knime.com/latest/deep_learning_installation_guide/#dl_python_setup for installation recommendations and further information.

External resources

  • envconfigs - KNIME Python Integration
  • you will need a working Anaconda oder Miniconda installation
  • (official) KNIME Deep Learning Integration Installation Guide
  • Meta Collection about KNIME and Python
  • (official) KNIME Python Integration Guide
  • please download the complete DeepLearning (Keras, Tensorflow, H2O.ai) Workflow group
  • Codeless Deep Learning with KNIME
  • TensorFlow 2 Tutorial: Get Started in Deep Learning With tf.keras
  • adapted from: Train a simple Multilayer Perceptron using TensorFlow 2
  • KNIME Deep Learning Integration Installation Guide

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.0
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Deep Learning - Keras Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Deep Learning - TensorFlow 2 Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Excel Support Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Interactive R Statistics Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Machine Learning Interpretability Extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Math Expression (JEP) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Python Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME SVG Support Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  • Go to item
    KNIME Timeseries nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits