Hub
Pricing About
WorkflowWorkflow

Counterfactual Explanations for scikit-learn (Python)

Interpretable MLPython and KNIMECounterfactual InstancesCounterfactual ExplainationsBinary Classification
+3
mpattadkal profile image
Draft Latest edits on 
Apr 8, 2021 11:56 AM
Drag & drop
Like
Download workflow
Workflow preview
This application is a simple example of using Conterfactual Explanations (Python) component to identify the Counterfactual Instances for a Binary classification model trained with Scikit-learn in Python. The Python object readers load the pickled model and the pickled Python object which is used for nomalisation of features. The component (in blue) can be used to select the instances to be used for Counterfactual Explanations.

External resources

  • Counterfactual-Interpretable-ml-book
  • KNIME Keras Extension
  • How to set up KNIME.-Python extension
  • Python Library for Counterfactual Instances
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.3.2 Note: Not all extensions may be displayed.
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime
  • Go to item
    KNIME Data GenerationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Deep Learning - Keras IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME Deep Learning - TensorFlow 2 IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.1

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.0

    knime
  • Go to item
    KNIME Python Integration

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.3.2

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits