Hub
Pricing About
WorkflowWorkflow

01_Fraud_Detection_Training_Solution

AutoencoderKerasNeural networkDeep learningEncoder
+11
R
Draft Latest edits on 
Feb 5, 2025 6:41 PM
Drag & drop
Like
Download workflow
Workflow preview
Keras Autoencoder for Fraud Detection - Training

Exercise of the L4-DL Deep Learning Specialization course.

The goal of this exercise is to train an autoencoder model to detect fraudulent transactions.

External resources

  • L4-DL course slides
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.3.2
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime
  • Go to item
    KNIME Column Expressions (Labs)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME Deep Learning - Keras IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME ExpressionsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime
  • Go to item
    KNIME JavaScript Views (Labs)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME Optimization extensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits