Hub
Pricing About
WorkflowWorkflow

Decision Tree select minimun number of records per node

Decision Trees
mauuuuu5 profile image
Draft Latest edits on 
Mar 11, 2022 10:28 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow makes a plot based on "the minimun records per node" parameter that helps to define the size of a decisión tree and its accuracy error At the beggining the user can define a list of numbers that defines "the minimun records per node" and then executes a loop that collects the error rate, for that parameter. The idea is to check in the scatter plot if there is an "optimal" "the minimun records per node" parameter given the error decrease in the decision tree
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.1
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Versions 3.2.0, 4.5.1

    knime
  • Go to item
    KNIME Data GenerationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits