Hub
Pricing About
WorkflowWorkflow

Fraud Detection: Model Training

FraudFraud detectionRandom forestDeploymentBanking
+2
SH
Draft Latest edits on 
Nov 4, 2024 2:23 PM
Drag & drop
Like
Download workflow
Workflow preview
This  workflow reads in the creditcard.csv file and trains and evaluates a Random Forest model to classify transactions as either fraudulent or not. Notice the final Rule Engine node. This node classifies all transactions with fraud probability above 0.3 as fraudulent.
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.4.1
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.1

    knime
  • Go to item
    KNIME Ensemble Learning WrappersTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime
  • Go to item
    KNIME JavaScript Views (Labs)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.0

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.1

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.4.1

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits