Hub
Pricing About
WorkflowWorkflow

HCC_Survival.knwf

T
Draft Latest edits on 
Jun 4, 2019 3:41 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow reads in HCC.csv file and trains random forest, K-nearest and decision tree to classify patient that survive the diagnosed liver cancer. The results shows random forest excels in both accuracy as 0.75 and number of false positive predictions as 0.35.
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Ensemble Learning WrappersTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Statistics NodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits