Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • francescots
  • Spaces
  • Public
  • Natural Language Processing
  • Examples
  • Intertopic Distance and Optimal Topic Identification
WorkflowWorkflow

Identify and visually represent a topic model

Topic detection Text summarization LDA Text processing NLP
+3
Francescots profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow explores a possible way to identify the optimal number of topics which describe appropiately a corpus. After choosing the best solution, it also creates a visual representation of them in a lower dimensional space by computing a distance between topics.

Used extensions & nodes

Created with KNIME Analytics Platform version 4.6.3 Note: Not all extensions may be displayed.
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.3.2, 4.5.1, 4.6.2

    knime
  • Go to item
    KNIME Interactive R Statistics Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime
  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.2

    knime
  • Go to item
    KNIME Javasnippet Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.5.0, 4.6.0

    knime
  • Go to item
    KNIME Math Expression (JEP) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.6.0

    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.5.0, 4.6.0

    knime
  • Go to item
    KNIME Statistics Nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  • Go to item
    KNIME Textprocessing Trusted extension

    KNIME AG, Zurich, Switzerland

    Versions 4.3.0, 4.6.2

    knime
  • Go to item
    KNIME Textprocessing - Deeplearning4J Integration (64bit only) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits