Hub
Pricing About
WorkflowWorkflow

Machine Learning and LIME

Machine learningSupervised learningTwitterXGBoostLIME
+2
fvillarroel profile image
Draft Latest edits on 
May 14, 2024 9:52 AM
Drag & drop
Like
Download workflow
Workflow preview
Building a Sentiment Analysis Predictive Model - Supervised Machine Learning This workflow uses a subset of the Kaggle Dataset including 14K customer tweets towards six US airlines (https://www.kaggle.com/crowdflower/twitter-airline-sentiment). Contributors annotated the valence of the tweets as positive, negative or neutral. For this example we use only positive and negative. If you use this workflow, please cite: Villarroel Ordenes, Francisco, Grant Packard, Davide Proserpio, and Jochen Hartmann, “Using Text Analysis in Service Failure and Recovery: Theory, Workflows, and Models”, Journal of Service Research, Forthcoming.
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.2.3
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.2

    knime
  • Go to item
    KNIME Excel SupportTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.2

    knime
  • Go to item
    KNIME H2O Machine Learning IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime
  • Go to item
    KNIME Machine Learning Interpretability ExtensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.2

    knime
  • Go to item
    KNIME TextprocessingTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime
  • Go to item
    KNIME ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.2

    knime
  • Go to item
    KNIME XGBoost IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits